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This project has achieved its original, major goal, viz., the delineation of the

principal (or sole) mechanism for plasma-tail disconnection events (DEs). A DE

involves the disconnection of the entire plasma tail from the head of the comet and

the regrowth of a new tail following a more or less consistent morphology. The DE

is probably the most spectacular event in cometary plasma physics.

The original approach of analyzing individual DEs in the IHW data set in or-

der to determine the solar-wind conditions and thus, identify the principal mecha-

nism, did not yield the anticipated result because of uncertainties'in extrapolating
solar-wind conditions to the comet. The raw materials, however, were an essential

ingredient for the successful approach, viz., considering all of the Halley DEs as a

group. In this approach, the uncertainties with individual DEs are minimized.

In situ solar-wind observations (from IMP-8, ICE, and PVO) and solar obser-

vations were used to synthesize the near-ecliptic variation of solar-wind speed, den-

sity, and dynamic pressure as well as the location of the heliospheric current sheet

for the entire period of large-scale plasma activity.

Comparison of these solar-wind conditions with the times of DEs conclu-

sively shows that the Halley DEs are associated with sector boundary crossings and

not with any other property of the solar wind. This result was presented at the

Asteroids, Comets, Meteors Meeting held in June at Belgirate, Italy. A copy of the

paper, submitted to Planetary and Space Science, is attached. This paper covers 16

DEs observed in Halley's comet. A second paper covering all 19 major DEs is in

preparation.

The interval of large-scale plasma activity in Halley's Comet (approximately

November 1985 to May 1986) was excellent for the purposes of this investigation

because of: (1) superb coverage of the comet through the IHW; (2) good in situ

solar-wind measurements from several spacecraft (IMP-8, PVO, ICE, and Vega-l);

and (3) heliospheric current-sheet data for all Carrington rotations from solar

observations and potential field calculations (J.T. Hoeksema, Stanford University).

No situation even close to this is foreseeable anytime in the near future.

This result, if the DEs in Halley's comet are representative, restricts DE mech-
anisms to those consistent with conditions at sector boundaries. To achieve accep-

tance, a DE mechanism must be reproducible in realistic MHD simulations.
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To accomplish this, we have collaborated with Dr. Ray Walker (UCLA) and

his associates. They are experts in cometary MHD simulations, have made their

simulation programs available to us for modification, and have continued to con-

sult with us. Dr. Walker extensively reviewed progress in November 1993. The re-

sults are very encouraging. Basically, magnetic reconnection on the sunward side of

the comet produces DEs, but no other solar-wind changes seen during the comet

Halley interval can. The general morphology and dynamics match the observed

properties of DEs. An initial report on these results was presented by Yi and Brandt

(BAAS 25, No. 3, p. 1066) at the October 1993 (Boulder, CO) meeting of the DPS/AAS.
The observational results and the theoretical confirmation of sunward, magnetic

reconnection as the principal mechanism for the DEs observed in Halley's comet

will form a major part of the Doctoral Thesis for Mr. Yu Yi, Department of Physics,

University of Colorado.

_" I,_ - ._2 .

John C. Brandt Date

Principal Investigator
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Abstract

Cometary and solar wind data from December 1985 through April 1986 axe pre-

sented for the purpose of determining the solar wind conditions associated with comet

plasma tall disconnection events (DEs). The cometary data are from The International

Halley Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992). In

addition, we present the kinematic analysis of 4 DEs, those of Dec. 13.5 and 31.2,

1985, and Feb. 21.7 and 28.7, 1986. The circumstances of these DEs clearly illustrate

the need to analyze DEs in groups.

In situ solar wind measurements from IMP-8, ICE, and PVO were used to con-

struct the variation of solar wind speed, density, and dynamic pressure during this

interval. Data from these same spacecraft plus Vega-1 were used to determine the

time of 48 current sheet crossings. These data were fitted to heUospheric current sheet

curves (Hoeksema, 1989) extrapolated from the corona into the heliosphere in order to

determine the best-fit source surface radius for each Caxrington rotation.

Comparison of the solar wind conditions and 16 DEs in Halley's comet (the 4 DEs

discussed in this paper and 12 DEs in the literature) leaves little doubt that DEs are

associated primarily with crossings of the heliospheric current sheet and apparently

not with any other property of the solar wind. If we assume that there is a single or

primary physical mechanism and that Halley's DEs are representative, efforts at sim-

ulation should concentrate on conditions at current sheet crossings. The mechanisms

consistent with this result are sunward magnetic reconnection (Niedner and Brandt,

1978) and tailwaxd magnetic reconnection (Russell, Saunders, Phillips, and Fedder,

1986), if ta.Uward reconnection can be triggered by the sector boundary crossing.

Subject headings: Comet-Solax Wind-Plasma Tail- Disconnection Event
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1 Introduction

A. History of DEs

The first general scientific morphology of DEs was known to Barnard (1920) without

any knowledge of the solar wind necessary to work toward a physical explanation. Bier-

mann (1951) first established the existence of the solar wind by studying the plasma tails of

comets. Later, Alfv_n (1957) originated the basic picture of the cometary interaction with

the interplanetary magnetic field (IMF). Alfv_n proposed that the IMF would be captured

and draped around the cometary ionosphere. About a decade later, Biermann, Brosowski,

and Schmidt (1967) were the first to quantitatively study a comet/solar wind interaction

model developed with the concept of a solar wind with frozen-in magnetic fields. The basic

picture was confirmed by the six spacecraft flybys of comets Giacobini/Zinner and Halley in

1985-1986 (Neugebauer, 1990). However, one of the most spectacular phenomena of comets,

the disconnection event (DE), where the plasma tail disconnects from the nucleus and sub-

sequently flows away, remained unsolved. Niedner and Brandt (1978) made the first attempt

to explain DEs. Since then, many theories (see Brandt, 1990) were suggested as explanations

of DEs, but a fully self-consistent three-dimensional model for DEs does not yet exist. We

can group the current competitive theories into two broad classes based on the triggering

mechanisms: (1) pressure effects (e.g. Ip, 1980) and (2) magnetic reconnection. In the first

class, the DEs occur through an interaction with a high-speed stream, a density enhance-

ment, or an increase in the dynamic pressure of the solar wind. In the second class, the DEs

occur through either tailward reconnection (Russell et aI., 1986) or sunward reconnection

(Niedner and Brandt 1978).

B. Organization of Paper

The results presented here begin with the analysis of four DEs. These results strongly

argue for the analysis of DEs in groups. We determine the variation of velocity, density, and

dynamic pressure in the solar wind for the relevant time period from spacecraft measure-

ments. The best-fit current sheet surface is determined by a fit to the spacecraft determina-

tions of current sheet crossings. Finally, we compare the 16 DEs observed in comet Halley
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to the solar wind conditions.

The basic concepts used in this work (such as co-rotation of solar wind properties) have

been in the literature for years and are generally known. We find, however, that use of the

"Carrington-Niedner Diagram" often requires explanation.

c. The "Carrington-Niedner Diagram"

Experience shows the best way to illustrate the relationship between DEs and the solar

wind conditions is to display everything in one coordinate system referenced to a standard

heliospheric distance, such as the Carrington longitude on the solar source surface. This can

be done by corotating everything (e.g. comet Halley DE locations, solar wind observations,

and the heliospheric sector boundaries) onto the Carrington longitude at the source surface.

A solar wind source in the corona sends material into an archimedian spiral pattern if the

sidereal pattern speed (14.4 ° per day) and the solar wind speed is constant. Then we can

corotate solar wind features at the spacecraft (IMP-8, PVO, ICE, or Vega-l) to the coronal

footprints of the archimedian spiral on the solar source surface. The same approach applies to

the heliospheric neutral current sheet, calculated from a potential model (Hoeksema, 1989).

This approach to comparisons based on Carrington coordinate systems was originated

by M.B. Niedner of the Goddard Space Flight Center. It was presented at the _20th ESLAB

Symposium on the Exploration of Halley's Comet, Heidelberg, Germany, October 1986 and

subsequently published (Niedner and Schwingenschuh, 1987).

2 Analysis of Individual DEs

There have been many reports and analyses of DEs during comet Halley's 1985-1986

appearance. The list of the 16 comet Halley DEs and references to analyses and discussions

are given in Table (1).

The detailed analysis of four DEs, two in December 1985 and two in February 1986, are

given here. We determined the time of disconnection where possible by kinematic analysis.

Otherwise, we used the kinematic properties of post-perihelion DEs, such as the rigorously-
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examinedDE of 1986March 16.0 (Yi et al. 1993b), in order to calculate the disconnection

time. Then we inferred the solar wind conditions from the corotated spacecraft solar wind

measurements for each event. We then present the relationship between these DEs and the

heliospheric current sheet (the sector boundary). This work is fully described by Yi et al.

(1993a).

(a) 1985 Dec. 13.5 DE

The photographic images we used are listed in Table (2). A sequence of sample images

is shown in Figure (1). The sector boundary was detected by Vega-1 (Dec 24.0) and PVO

(Dec 29.0). The solar wind data are sparse around the time of the actual DE, but we can

infer from the adopted velocity variation of this time period (see section 3) a solar wind speed

of ,-, 370 km s -1 and a solar wind density of ,-- 15 cm -3. The solar wind speed was lower

than the average and the density was higher than the average at 1 AU. The sector boundary

crossings by spacecraft, the heliospheric current sheet extrapolated from the corona, and the

comet Halley DE locations are plotted in Figure (2). This DE occurred somewhat far from

the heliospheric current sheet.

(b) 1985 Dec. 31.2 DE

Table (3) lists the photographs for this DE, and Figure (3) shows its evolution. The

sector boundary was crossed by PVO (Dec 18.8), IMP-8 (Jan 4.8), ICE (Jan 5.6), and Vega-1

(Jan 10.0). IMP-8 measured the solar wind conditions for the sector boundary, where the

solar wind speed was ,_ 400 km s -1 and the solar wind density was _ 10 cm -3. The solar

wind speed was decreasing slowly from a value of 700 km s -1 three days earlier. Comet Halley

was coming out of the high-speed stream region. The solar wind speed was an average speed

for 1 AU and the density was a little higher than average. Figure (4) shows the positions

of the spacecraft sector boundary crossings and the DE, and the heliospheric current sheet.

This DE's position was rather far from the projected sector boundary, but it is clear from the

comparison with the spacecraft measurements that the heliospheric current sheet probably

comes much closer to the DE than indicated.

(c) 1986 Feb. 21.7 DE



The photographsof this DE aredescribedin Table (4), and aredisplayedin Figure (5).

The sector boundary wasdetectedby IMP-8 (Feb 11.0), ICE (Feb 13.0), and Vega-1(Feb

16.0). As measuredby IMP-8, the solar wind speedwas ,_ 500 km s -1 and the solar wind

density was _, 7 cm -3. The solar wind speed was somewhat higher than the average and the

density was average for 1 AU. Figure (6) illustrates the locations of the sector boundary, the

spacecraft measurements, and the DEs. The DE occurred well away from the extrapolated

sector boundary. However, comparison with the spacecraft observations indicates that the

sector boundary is probably closer to the DE than indicated and perhaps the association

with the sector boundary would be satisfactory.

(d) 1986 Feb. 28.7 DE

Table (5) lists the photographs analyzed for this DE, and samples are shown in Figure

(7). The sector boundary was observed by PVO (Feb 6.8), and the geomagnetic index, EI(p

(Feb 16.0). Plasma data from PVO show that the solar wind speed was ,-, 340 km s -1 and

the solar wind density was ,_ 17-34 cm -3. The density values are scaled to 1 AU. This

density is much higher than the average solar wind density at 1 AU. Figure (8) displays the

relationship between the heliospheric current sheet, the comet Halley DEs, and the spacecraft

observations of the heliospheric current sheet crossings. The DE occurred quite close to the

heliospheric current sheet. The solar wind speed was slower than average.

C. Need for Group Analysis

The apparent diversity of physical conditions for DEs illustrates the difficulty of analysis

for individual DEs. The individual consideration of DEs does not allow a convincing selection

between pressure effects or magnetic reconnection at the sector boundaries or any other

candidate for the correct physical mechanism. Part of this difficulty may be attributed to

corotation of the solar wind data, which assumes the constancy of the solar wind conditions

for the Carrington rotation period, and to uncertainties in the current sheet calculations. In

order to minimize the impact of uncertainties in any single event, we should study DEs as a

group. This kind of effort has been started by Delva et al. (1991) and Brandt et al. (1992

a,b).

6



3 Solar Wind Velocity, Density, and Dynamic Pressure

A. Need for an Empirical Velocity Curve

In order to verify the cause of DEs, first we need to find the correlations between the

DEs and conditions in the solar wind. To do this, we need full coverage of the solar wind

velocity for the whole period under study. The solar wind velocity data curve is also the key

for corotation of all other solar wind conditions (IMF structure, the solar wind density, and

the dynamic pressure) as well as the solar wind velocity itself. This enables the comparison

of DEs and solar wind properties on the Carrington-Niedner longitude diagrams as described

above. Using the observational velocity data can reduce the errors as compared to simply

assuming an average outflow velocity.

B. Data Sources, Approach, and Results

There were several spacecraft in orbit during the time period when DEs were observed

on comet Halley. Those spacecraft are six comet Halley flyby missions (Giotto, Vega-l,

Vega-2 Sakigake, Suisei, ICE), IMP-8 orbiting the earth, and PVO orbiting Venus.

We obtained solar wind data from IMP-8, PVO, and ICE. For consistency, we have used

mostly IMP-8 data. However, IMP-8 has data gaps when it is inside the magnetosphere.

We have augmented those times with data from PVO. Then, we have used ICE data as a

supplement for still remaining data gaps. For the sector boundary observations, we added

the Vega-1 sector boundary crossing times summarized by Delva et al.(1991).

The complete solar wind velocity curve is plotted in Figure (9 top) with the measure-

ments from the different spacecraft plotted differently. We can see where the coverage is good

and where the interpolation may influence the conclusions. In some cases, shift of data from

different spacecraft might be appropriate and would reduce the fine structure. However we

have not done this because such a procedure is ultimately subjective. By the same process,

we can produce the variation of the solar wind plasma density in Figure (9 middle) and solar

wind dynamic pressure in Figure (9 bottom). From Figure (9), we can see the changes of

solar wind conditions and, when compared with the DEs (see Figure 15), their relationship
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with the comet Halley DEs almost at a glance.

4 The Heliospheric Current Sheet

For the analyses, we used the heliospheric current sheet given by the potential field

model (see Hoeksema, 1984). This model assumes that no currents flow near the sun; hence,

the magnetic field can be described by a scalar potential field. A hypothetical spherical

surface, called the source surface, is introduced at heights of 1.6 RsvN, 2.0 RSVN, and 2.5

RSUN . At the the source surface, all magnetic field lines are assumed to be frozen in the

plasma and are carried radial outward into the heliosphere by the solar wind. There are

some disadvantages to the potential model, but for the large-scale phenomena the model

is sufficient. This IMF structure (heliospheric current sheet) when projected to 1 AU is in

reasonable agreement with the observations (Hoeksema, 1989).

For each of the Carrington rotations, the farther the source surface is located from the

sun the less structure the current sheet exhibits. Specifically, as the source surface radius

increases, the heliospheric current sheet remains closer to the projected solar equator for

all Carrington longitudes. The heliospheric current sheet model dependency on the source

surface radius is shown in Figure (10).

For each of the four spacecraft (IMP-8, PVO, ICE, Vega-l) we obtained the positions

of the sector boundary crossing on the heliospheric source surface. Then we calculated the

rms distance of the spacecraft from the sector boundary for each source surface radius (1.6

RSUN, 2.0 RSUN, and 2.5 RSVN) for Carrington rotations 1769 to 1774. The 2.5 RSUN source

surface fit the spacecraft data best for Carrington rotations 1770 through 1774, while the 2.0

RSUN source surface produced the lowest rms value for Carrington rotation 1769. However,

in Carrington rotation 1769, the difference between the rms values for source surfaces of

2.0 RSUN and 2.5 Rst.rN was small. For all subsequent results quoted in this paper, we will

use source surface 2.0 Rsvn for Carrington rotation 1769 and source surface 2.5 RSUN for

Carrington rotations 1770-1774. Figure (10) shows the sector boundary positions observed

by spacecraft compared with the best-fit heliospheric current sheet.
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For Carrington rotations 1769-1774,the four spacecraftcrossedthe sectorboundariesa

total of 48 times. The mean deviation between the spacecraft's location of the sector bound-

ary and the position given by the potential field model was 6.7 °, while the rms calculation

of the dispersion was 8.9 °. However, nearly 13% of the rms residue was produced by the

1986 March 17.7 Vega-1 detection of the sector boundary. If we neglect this crossing, the

rms residue drops to 7.8 °, while the mean residue decreases to 6.2 °.

5 Comparison with the Halley DEs

A. The Heliospheric Current Sheet

Reference to investigations of the 16 obvious DEs used in this paper are given in Table

(1). These DEs are overplotted on the best-fit hellospheric current sheet in Figure (11). Due

to the retrograde motion of comet Halley, it detects one extra Carrington rotation than the

Earth does. To model this we duplicated CR 1771. Since there were no DEs observed in

this duplication period, the addition does not affect the results.

The association of DEs with sector boundaries seems clear. There is almost a one to one

correspondence between sector boundary crossings and DEs, i.e., the number of opportunities

for DE production at crossings is approximately equal to the observed number of DEs during

this time interval. In addition, the distribution of errors with respect to the current sheet

are similar for DEs and spacecraft determinations as shown in Figure (12).

Where there are gaps, they are consistent with the observing conditions. An excellent

indicator of possible coverage is the histogram of images used in The International Halley

Watch Atlas of Large-Scale Phenomena (Brandt, Niedner, and Rahe, 1992, p.707). Specifi-

cally, the coverage in late December 1985 and around perihelion (9 February 1986) is quite

sparse. DEs that would be expected in these time periods probably were not observed.

We find a mean residue between the DEs' positions and the sector boundary of 11.3 o

and an rms value of 14.7 °. The magnetic reconnection between the anti-parallel magnetic

field lines draped around the comet ionosphere occurs over a period of time. Therefore, there

should be a time delay between the comet encountering the heliospheric current sheet and
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the observation of a DE for the sunwardreconnectionmodel. Niedner and Brandt (1978)

estimated --_ 0.7 day. To account for this delay, we shifted each DE position an equal amount

and found which shift produced the lowest rms residue. The lowest rms residue was 13.5"

and occurred approximately at a 1 day shift.

Because the analysis of specific DEs, e.g., 1986 Jan. 9.7 (Niedner et al., 1991) and

1986 Mar. 16.0 (Yi et al., 1993b), suggests (by comparison with spacecraft measurements)

that the major error might be in longitude, the results determined from seeking the closest

current sheet location (which can involve a major latitude difference) may be in error. In

essence, the point of minimum distance to the heliospheric current sheet may not be the

actual place where the comet crossed the sector boundary. To consider this case, we calcu-

lated the distance between the DE and the position on the current sheet with the same (or

approximately the same) heliospheric latitude as the DE. For no shift, the rms value was

19.2 °. The minimum, 18.9", occurred at approximately a 0.25-day shift of DE position. The

difference between the best rms value of the shifted DE positions to that of no shift is only

0.3 ° . Hence, we do not believe this case can permit an accurate determination of the actual

time between the comet penetration of the current sheet and the first visible onset of the

DE. For consistency, we chose a 1-day shift of the DE positions, which produced an rms

dispersion of 20.2 ° .

To test quantitatively whether DEs axe associated with sector boundaxies, we ran 5,000

cases of 16 DEs randomly placed on comet Halley's orbit for the time period between plasma

tail turn-on and turn-off. There were two long periods where there were little or no observa-

tions. For calculating the random positions corresponding to the observation periods along

comet Halley's orbit, we did not permit random positions in the observation periods of 1985

Dec 20-30 and 1986 Jan 20-Feb 20.

When we calculated the minimum distance to the current sheet with no latitude restric-

tion, we obtained an rms value of 17.3 °. Of these 5,000, iterations 90.9% were greater than

the 13.5 ° which resulted from shifting the data by one day while 83.3% were greater than

the 14.7" obtained from no shift. However, if we calculate the difference between the random

DE positions and the current sheet with the same (or approximately the same) heliospheric
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latitude, we obtain an rms value of 42.5°. Of the 5,000iterations, 99.6%weregreater than

the rms result of 20.20calculatedby shifting the data, while 99.9%werelarger than the rms

result of 19.2o with no shift. The two casesareshownin Figures (13) and (14). We believe

the physical situation lies betweenthesetwo cases.

Quantitatively, the dispersionof the total samplesaround the best fit heliosphericcur-

rent sheetis 8.9° for spacecraft determination and 13.5 ° for DEs. When the two worst cases

are removed, the dispersions are 7.2 ° for spacecraft determinations and 10.0 ° for DEs. When

the four worst cases are out, the dispersions are 6.4 ° for spacecraft determinations and 8.7 °

for DEs. These values seem to indicate a reasonable situation of the dispersion with respect

to DEs being 35-40% higher than the dispersion with respect to spacecraft determinations.

B. The Solar Wind Velocity, Density, and Dynamic Pressure

Figure (15) shows the grand comparison of the DEs to the heliospheric current sheet (top

panel), the solar wind velocity (second panel), density (third panel), and dynamic pressure

(bottom panel).

If we count as a high-speed stream the periods when the solar wind speed is over 600

km s-1, we find 11 high-speed streams for the total period of Carrington rotation 1769-1774.

However, when the observational black-out periods are considered, this literally drops to 7

high-speed streams, but we count the number as 8 because the high-speed stream around

Carrington longitude 233 ° of Carrington rotation 1771 is reasonably near the DE of 1986 Feb.

21.7. Further, only 6 out of 16 DEs are anywhere near the high-speed streams. There are

simply not enough high-speed streams to do the job. Hence, the comparison to hlgh-speed

streams is not favorable.

There are many solar wind density changes with time. There are more than 22 instances

of the solar wind density being greater than 20 cm -3, and if the time of observational black-

out is excluded, the number falls to 18. Only 10 DEs, however, are anywhere near density

enhancements and the number drops to 8 DEs if we require that they lie within ,,_ 24 ° in

Carrington longitude. Finally, 6 DEs are nowhere near a density enhancement. Hence, the

comparison with high-density regions is not favorable.
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The solar wind dynamic pressuredoesnot vary much becausethe solar wind density

usually increaseswhen the solarwind velocity decreasesand viceversa. Therearealmostno

strong increasesof the dynamic pressureexcept in Carrington rotation 1771when ground

observationswere not available.The only possibleassociationsare with the 1985Dec. 31.2

DE and the 1986Feb. 21.7DE. Therefore,the comparisonwith dynamic pressureeffectsis

not favorable.

Besides the solar wind parameters discussed above, Yi et al. (1993a) considered the

possible association of changes in the Alfv_n Mach number with DEs and concluded that the

association was unlikely. Finally, to assist in following the details of the various association

with DEs, we have listed the Carrington longitude of each DE (determined by the adopted

solar wind velocity curve) in Table (1).

6 Discussion and Conclusions

The association of DEs with sector boundaries seems to be very clear. Thus, the two

possible mechanisms are sunward magnetic reconnection at the sector boundary (Niedner

and Brandt 1978) and tailward magnetic reconnection due to sector boundary crossings

(Russell et al. 1986), if sector boundaries can serve as triggers. If we assume that all DEs

have a common cause and that the DEs in Halley's comet are representative, then future

theoretical efforts must focus on conditions at sector boundaries.

The comet Halley interval was a good one in many respects, with intensive imaging

from the ground, good heliospheric current sheet data, and solar wind data available from

many spacecraft. Unfortunately, an opportunity similar to the comet Halley interval is

not likely to occur anytime in the near future. While progress has been made, we have

intensively analyzed only the DEs of comet Halley 1985-1986. Thus, continued work requires

ground-based observations with proper coverage, solar wind measurements, in situ comet

measurements, and theoretical studies. Future missions are critical for understanding of

plasma structures and the solar wind interaction, as well as other areas of cometary physics.

The Ulysses mission will be a good chance to test the high-latitudinal variations of the
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heliosphericcurrent sheetand its relationshipwith cometaryDEs. During the times of polar

passageby Ulysses,we can gather cometary images,and correlatethe cometarydata with

solar wind conditions asmeasuredby Ulysses.

The field of global 3-dimensionalmagnetohydrodynamics(MHD) simulations has de-

velopedthe ability to test the causalitiesand the processesof interaction betweenthe solar

wind and comets in responseto changesin the solar wind. Schmidt-Voigt(1989) reported

that he wasunable to seethe sunwardmagneticreconnectionmorphology in responseto the

reversalof the IMF with an idealMHD model. However,usinga resistiveMHD codeadapted

from Ogino, Walker and Ashour-Abdalla (1988), Yi and Brandt (1992) have produced the

observedfeaturesof DE evolution, describedby Brandt (1982), suchas the symmetric ray

formation and the disconnectedtail, when an IMF reversalwas simulated. Thus, we are

optimistic that MHD simulations will ultimately reproducethe details observedin DEs.
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Figure 1: Representativetime sequence of photographs of a Disconnection Event in comet

Halley from 13 to 15 December 1985, chosen from the Large Scale Phenomena Network

(LSPN) data base of the International Halley Watch (IHW). From top to bottom: 18.80

UT on Dec. 13 by M. J_ger, Austria; 19.48 UT on Dec. 13 by F. Van Wyk, LSPN Island

Network, Sutherland; 2.38 UT on Dec. 14 by R. Hill, Warner and Swasey Observatory, USA;

3.29 UT on Dec. 14 by E. Moore et al., Joint Observatory for Cometary Research, USA;

1.22 UT on Dec. 15 by W. Liller, University of Michigan/CTIO, Chile.

Figure 2: Carrington-Niedner Diagram for the 13.5 December 1985 DE. Displayed are four

spacecraft (IMP-8, ICE, PVO, and Vega-l) detections of the sector boundaries and the

heliospheric current sheet position for source surface 2.0 RSVN for Carrington rotation 1769.

The 4- symbol marks ion tail turn-on position. The x represents a 1-day shift of the

December 13.5 DE.

Figure 3: Representative time sequence of photographs of a Disconnection Event in comet

Halley from 30 December 1985 through 1 January 1986. From top to bottom: 19.25 UT on

Dec. 30, 1985 by A. Laugier, Observatory of Haute-Provence, France; 9.34 UT on Dec. 31,

1985 by H. Maehara, Kiso Observatory, Japan; 9.75 UT on Dec. 31, 1985 by H. Maehara,

Kiso Observatory, Japan; 1.72 UT on Jan. 1, 1986 by G. Emerson, E.E. Barnard Observatory,

USA.

Figure 4: Carrington-Niedner Diagram for 31.2 December 1985 DE. Displayed are four

spacecraft (IMP-8, ICE, PVO, and Vega-l) detections of the sector boundaries and the

heliospheric current sheet position for source surface 2.5 Rsu1v for Carrington rotation 1770.

The x represents a 1-day shift of the December 31.2 DE.

Figure 5: Time sequence of photographs of a Disconnection Event in comet Halley on 22

February 1986. From top to bottom: 3.02 UT on Feb. 22, 1986 by F. Van Wyk, LSPN

Island Network, Sutherland; 18.70 UT on Feb. 22, 1986 by UKSTU, Royal Observatory,

Australia.

Figure 6: Carrington-Niedner Diagram for 21.7 February 1986 DE. Displayed are four space-

craft (IMP-8, ICE, PVO, and Vega-1) detections of the sector boundaries and the heliospheric

current sheet position for source surface 2.5 RsuN for Carrington rotation 1771. The x rep-

resents a 1-day shift of the February 21.7 DE.
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Figure 7: Representative time sequence of photographs of a Disconnection Event in comet

Halley on 2 March 1986. From top to bottom: 0.00 UT on Mar. 2, 1986 by W. Liller,

University of Michigan/CTIO, Chile; 11.76 UT on Mar. 2, 1986 by W. Liller, University

of Michigan/CTIO, Chile; 12.04 UT on Mar. 2, 1986 by W. Liller, University of Michi-

gan/CTIO, Chile.

Figure 8: Carrington-Niedner Diagram for 28.7 February 1986 DE. Displayed are four space-

craft (IMP-8, ICE, PVO, and Vega-l) detections of the sector boundaries and the heliospheric

current sheet position for source surface 2.5 RSUN for Carrington rotation 1772. The x rep-

resents a 1-day shift of the February 28.7 DE.

Figure 9: Variations of the solar wind conditions. From top to bottom: solar wind speed;

solar wind density; solar wind dynamic pressure, where the unit was chosen with the density

8 cm -3 and the velocity 400 km sec -1. The thin line is the IMP-8 data, the medium line is

ICE data, and the thick line is PVO data.

Figure 10: Current Sheet fit to spacecraft data. Displayed are the four spacecraft (IMP-8,

ICE, PVO, and Vega-l) detections of the sector boundary and the current sheet positions

for source surface radii 2.0 RsuN and 2.5 RsuN. For clarity we have left off the 1.6 RSUN

source surface. The 2.5 RsuN source surface can be identified as the curve typically closer

to 0 ° latitude.

Figure 11: Comparison of comet Halley's 16 DEs to the best-fit current sheet. The solid

curves depicts the 'best fit' current sheet as determined by the spacecraft data. The lightly-

dashed curve represents comet Halley's orbit with each individual DE denoted by an asterisk.

Ion tail turn-on/off and perihelion are marked by diamonds and a triangle respectively. The

heavy dashed boxes correspond to periods with little or no observations of comet Halley.

Due to the retrograde motion of comet Halley, we duplicated CR 1771.
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Figure 12: Histogramsof dispersionfor DEsand spacecraftdetectionsof the sectorboundary.

Figure 13: Histogram in 1.0" bins of the rms dispersionof 5000iterations of 16 DEs ran-
domly placed along comet Halley's orbit as describedin the text. The rms dispersion is
for the casewherewe calculated the minimum distancebetweenthe current sheetand the
DE. The dashedline is the actual rms dispersion(13.5") of comet Halley's 16 DEs shifted
approximately one day.

Figure 14: Histogramin 1.0"binsof the rms dispersionof 5000iterations of 16DEs randomly
placedalongcometHalley's orbit asdescribedin the text. The rms dispersionis for the case
wherethe DE and the current sheethavethe same(or approximately the same)heliospheric
latitude. The dashed line is the actual rms dispersion(22.2°) of comet Halley's 16 DEs
shifted 1.0day.

Figure 15: Grand Comparison Diagram: This is a composite plot of Fig.(9) and Fig.(ll).

From top to bottom: comet Halley's 16 DEs and the best-fit current sheet; solar wind speed;

solar wind density; solar wind dynamic pressure.
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DE Disconnection DE location Analysis done RelatedReports
No. Time (UT) CR, longitude

1 1985Dec4.7 1769,224.8" Niedner (1986)
2 13.5 85.4* This paper Niedner (1986)
3 31.2 1770,182.8" Saito et a/.(1987) Niedner (1986)

This paper

4 1986 Jan 8.6 54.3 °

5 9.7 36.0* Niedner et a1.(1991)

6 Feb 21.7 1771, 7.4* This paper

7 28.7 1772,248.7" This paper

8 Mar 4.5 184.1"

9 8.4 139.6"

10 12.6 65.9*

Niedner&Schwingenschuh(1987)

11 16.0 31.4" Yi et al.(1993b)

12 19.3 1773,344.1"

13 Apr 1.7 155.4"

14 6.9 79.4*

15 10.9 45.5 °

16 13.7 1774,348.7"

Brosius et al.(1987)

Brosius et a1.(1987)

Lundstedt & Magnusson (1987)

Lundstedt & Magnusson (1987)

Yi et al.(1993a)

Niedner (1986)

Kubacek et al.(1986)

Niedner (1986)

Tomita et al.(1987)

Niedner (1986)

Niedner (1986)

Niedner (1986)

Celnik et a/.(1988)

Niedner (1986)

Wu&Qiu (1987)

Niedner (1986)

Salt. et a/.(1987)

Celnik et al.(1988)

Feldmanet al.(1986)

Celnik et al.(1988)

Niedner (1986)

Celnik et al.(1988)

Celnik et al.(1988)

Niedner (1986)

Celnik et al.(1988)

Brandt&Niedner(1986)

Jockers (1987)

Celnik et a1.(1988)

Niedner (1986)

Celnik et al.(1988)

Table 1:16 DEs identified based on The International Halley Watch Atlas of Large-Scale

Phenomena (Brandt, Niedner, and Rahe 1992).
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Date Hours Distance Observer(s)
(UT) (108km) Observatory

LSPN
No.

1985Dec 13 18.80 1.43
19.20 1.56
19.48 1.60

Dec 14 1.22 2.35
1.67 2.39
2.12 2.45
2.38 2.50
2.60 2.54
3.12 2.60
3.29 2.65

Dec 15 1.22 7.06
2.09 7.39

M. J£ger,Austria
F. Van Wyk, LSPN Island Network, Sutherland 1769

F. Van Wyk, LSPN Island Network, Sutherland 1770

W. Liller, University of Michigan/CTIO, Chille 215

W. Liller, University of Michigan/CTIO, Chille 216

W. Liller, University of Michigan/CTIO, Chille 217

R. Hill, Warner and Swasey Observatory, USA 2582

W. Liller, University of Michigan/CTIO, Chille 218

W. Liller, University of Michigan/CTIO, Chiile 219

E. Moore et aI. Joint Obs.for Cometary Res., USA 1723

W. Liller, University of Michigan/CTIO, Chille 220

W. Liller, University of Michigan/CTIO, Chille 222

Table 2:1985 Dec 13.5 DE: Observation time, the calculated distance between the comet

head and the end of the disconnected plasma tail, observatory and observers for the images

13 to 15 December 1985, archived in the Large Scale Phenomena Network (LSPN) data base

of the International Halley Watch (IHW). In calculating the distance we have assumed that

the disconnected plasma tail recedes along the prolonged radius vector.
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Date Hours Distance Observer(s) LSPN
(UT) (106kin) Observatory No.

1985Dec 31 9.34 0.62 H. Maehara,Kiso Observatory,Japan 1620
9.75 0.75 H. Maehara,Kiso Observatory,Japan 1621

1986Jan 1 1.72 5.52 G. Emerson,E.E. Barnard Observatory,USA 127

Table 3:1985 Dec 31.2 DE: Observationtime, the calculated distance betweenthe comet
head and the end of the disconnectedplasmatail, observatoryand observersfor the images
31 December1985through 1 January 1986.
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Date Hours Distance Observer(s) LSPN
(UT) (106km) Observatory No.

1986Feb 22 3.02 1.36 F. Van Wyk, LSPN Island Network, $utherland 1781
18.70 2.70 UKSTU, Royal Observatory/UKSTU, Australia 127

Table 4:1986 Feb 21.7 DE: Observation time, the calculated distance between the comet

head and the end of the disconnected plasma tail, observatory and observers for the images

on 22 February 1986.
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Date Hours Distance Observer(s) LSPN
(UT) (106km) Observatory No.

1986Mar 2 0.00 2.62 W. Liller, University of Michigan/CTIO, Chille 1357
11.48 2.71 W. Liller, University of Michigan/CTIO, Chille 1354
11.76 2.74 W. Liller, University of Michigan/CTIO, Chille 1356
12.04 2.75 W. Liller, University of Michigan/CTIO, Chille 1358

Table 5:1986 Feb 28.7 DE: Observationtime, the calculated distancebetween the comet
head and the end of the disconnectedplasmatail, observatoryand observersfor the images
on 2 March 1986.
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